Produit scalaire

Prof: KARIMINE

Exercice 1

On considère les points A(3,2) ; B(5,6) et C(-1,4)

- lacktriangle Calculer $\cos(\overrightarrow{\overline{BA}},\overrightarrow{\overline{BC}})$ et $\sin(\overrightarrow{\overline{BA}},\overrightarrow{\overline{BC}})$ puis déduire la mesure principal de l'angle $(\overrightarrow{\overline{BA}},\overrightarrow{\overline{BC}})$
- $oldsymbol{2}$ Déterminer l'équation de la hauleur issue du point $oldsymbol{A}$ du triangle $oldsymbol{ABC}$
- $oldsymbol{3}$ Déterminer les coordonnées de l'orthocentre du triangle ABC

Exercice 2

On considère le plan (P) muni d'un repère orthonormé ($O; \vec{i}; \vec{j}$). Soient A et B deux points différents du plan (P) et G le barycentre du système des points pondérés $\{(A,1),(B,3)\}$ et K le barycentre du système des points pondérés $\{(A,1),(B,-3)\}$

- lacktriangle Déterminer \overrightarrow{AG} et \overrightarrow{AK} en fonction de \overrightarrow{AB} .
- $oldsymbol{2}$ Montrer que $oldsymbol{G}$ est le milieu de $[oldsymbol{A} oldsymbol{K}]$
- $oldsymbol{\$}$ Soit (E) l'ensemble des points M du plan (P) tel que : $MA^2-9MB^2=0$
 - a Montrer que $(\forall M \in (P)), MA^2 9MB^2 = -8\overrightarrow{MG} \cdot \overrightarrow{MK}$
 - $\underline{\mathrm{b}}$ Montrer que G et K appartiennent à (E)
- $oldsymbol{\Phi}$ $oldsymbol{oldsymbol{\Box}}$ Déterminer les coordonnées de G et de H dans le repère $(O; ec{i}; ec{j})$ sachant que: A(4; -2) et B(0; 2)
 - b Calculer d(O,(AB)), en déduire l'aire du triangle OAB
 - \bigcirc Montrer que $M(x;y) \in (E) \Leftrightarrow x^2 + y^2 + x 5y + 2 = 0$
 - d Montrer que (E) est un cercle de centre Ω et de rayon r à déterminer puis donner une représentation paramétrique de (E)
 - $\underline{\mathbf{e}}$ Déterminer l'intersection du cercle (E) et les axes du repère.
 - f Déterminer l'ensemble des points M défini par : $AM^2 = \frac{81}{2}$ et $\overrightarrow{GM} \cdot \overrightarrow{KM} = 0$ puis déterminer une équation cartisienne de chacune des deux tangentes au cercle (E) et passant par A
 - g Soit (D) l'ensemble des points M défini par : $AM^2 BM^2 = AB^2$ Montrer que l'ensemble (D) est une droite dont on déterminera son équation cartésienne.
 - $\underline{ \underline{ h} }$ Résoudre graphiquement le système suivant: $\left\{ egin{array}{l} x^2+y^2+x-5y+2 \leq 0 \\ x-y+2 \geq 0 \end{array}
 ight.$

Exercice 3

Soient $m \in \mathbb{R}$ et (\mathscr{C}_m) l'ensemble des points M(x;y) vérifiant :

$$x^2 + y^2 - 2mx + 4my + 4m^2 + 2m - 1 = 0$$

- lacktriangle Montrer que (\mathcal{C}_m) est un cercle et préciser son centre et son rayon.
- **2** Montrer que tous les cercles (\mathcal{C}_m) passent par un point fixe.
- **3** Montrer que la droite $(\mathcal{D}): 3x + 4y + 5 = 0$ est tangente à tous les cercles (\mathscr{C}_m)